Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(3): eadk2771, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241374

RESUMO

Mutation signatures associated with apolipoprotein B mRNA editing catalytic polypeptide-like 3A/B (APOBEC3A/B) cytidine deaminases are prevalent across cancers, implying their roles as mutagenic drivers during tumorigenesis and tumor evolution. APOBEC3A (A3A) expression induces DNA replication stress and increases the cellular dependency on the ataxia telangiectasia and Rad3-related (ATR) kinase for survival. Nonetheless, how A3A induces DNA replication stress remains unclear. We show that A3A induces replication stress without slowing replication forks. We find that A3A induces single-stranded DNA (ssDNA) gaps through PrimPol-mediated repriming. A3A-induced ssDNA gaps are repaired by multiple pathways involving ATR, RAD51, and translesion synthesis. Both ATR inhibition and trapping of poly(ADP-ribose) polymerase (PARP) on DNA by PARP inhibitor impair the repair of A3A-induced gaps, preferentially killing A3A-expressing cells. When used in combination, PARP and ATR inhibitors selectively kill A3A-expressing cells synergistically in a manner dependent on PrimPol-generated gaps. Thus, A3A-induced replication stress arises from PrimPol-generated ssDNA gaps, which confer a therapeutic vulnerability to gap-targeted DNA repair inhibitors.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas , Proteínas/metabolismo , DNA , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética
2.
Cancer Immunol Res ; 12(2): 232-246, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38091354

RESUMO

Isocitrate dehydrogenase (IDH)-wild-type (WT) high-grade gliomas, especially glioblastomas, are highly aggressive and have an immunosuppressive tumor microenvironment. Although tumor-infiltrating immune cells are known to play a critical role in glioma genesis, their heterogeneity and intercellular interactions remain poorly understood. In this study, we constructed a single-cell transcriptome landscape of immune cells from tumor tissue and matching peripheral blood mononuclear cells (PBMC) from IDH-WT high-grade glioma patients. Our analysis identified two subsets of tumor-associated macrophages (TAM) in tumors with the highest protumorigenesis signatures, highlighting their potential role in glioma progression. We also investigated the T-cell trajectory and identified the aryl hydrocarbon receptor (AHR) as a regulator of T-cell dysfunction, providing a potential target for glioma immunotherapy. We further demonstrated that knockout of AHR decreased chimeric antigen receptor (CAR) T-cell exhaustion and improved CAR T-cell antitumor efficacy both in vitro and in vivo. Finally, we explored intercellular communication mediated by ligand-receptor interactions within the tumor microenvironment and PBMCs and revealed the unique cellular interactions present in the tumor microenvironment. Taken together, our study provides a comprehensive immune landscape of IDH-WT high-grade gliomas and offers potential drug targets for glioma immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Leucócitos Mononucleares/patologia , Perfilação da Expressão Gênica , Mutação , Microambiente Tumoral/genética
3.
Genes Dev ; 37(19-20): 929-943, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932012

RESUMO

The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Reparo de Erro de Pareamento de DNA , Animais , Camundongos , Reparo de Erro de Pareamento de DNA/genética , Mutações Sintéticas Letais , DNA , Imunoterapia
4.
Nat Commun ; 14(1): 6114, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777505

RESUMO

The roles of R-loops and RNA modifications in homologous recombination (HR) and other DNA double-stranded break (DSB) repair pathways remain poorly understood. Here, we find that DNA damage-induced RNA methyl-5-cytosine (m5C) modification in R-loops plays a crucial role to regulate PARP1-mediated poly ADP-ribosylation (PARylation) and the choice of DSB repair pathways at sites of R-loops. Through bisulfite sequencing, we discover that the methyltransferase TRDMT1 preferentially generates m5C after DNA damage in R-loops across the genome. In the absence of m5C, R-loops activate PARP1-mediated PARylation both in vitro and in cells. Concurrently, m5C promotes transcription-coupled HR (TC-HR) while suppressing PARP1-dependent alternative non-homologous end joining (Alt-NHEJ), favoring TC-HR over Alt-NHEJ in transcribed regions as the preferred repair pathway. Importantly, simultaneous disruption of both TC-HR and Alt-NHEJ with TRDMT1 and PARP or Polymerase θ inhibitors prevents alternative DSB repair and exhibits synergistic cytotoxic effects on cancer cells, suggesting an effective strategy to exploit genomic instability in cancer therapy.


Assuntos
Citosina , Estruturas R-Loop , Estruturas R-Loop/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , RNA/genética , Reparo do DNA
5.
ACS Chem Neurosci ; 14(18): 3409-3417, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37647501

RESUMO

Cognitive dysfunction induced by anesthesia in the infant is a crucial clinical issue that is still being debated and the focus of concern for the parents. However, the mechanism of cognitive decline caused by anesthesia and the corresponding treatment methods remain unclear. Postnatal day 7 (PND7) C57BL/6 mice included in the study were randomly divided into a control group (Control), a group with repeated exposure to sevoflurane (Sevo), and an Apamin intervention group (Sevo + Apamin). Apamin (0.5 µL at the concentration of 100 nmol/L) was injected into the bilateral hippocampus of mice. qRT-PCR, enzyme-linked immunosorbent assay (ELISA), and western blotting assay were used to evaluate the protein levels in the hippocampus. Object location memory (OLM) and novel object recognition (NOR) tasks, as well as elevated plus maze and contextual and cued fear conditioning tasks were used to evaluate the cognitive function of mice. Apamin mitigated sevoflurane-induced cognitive impairment of mice, sevoflurane-induced neuronal injury, and sevoflurane-induced activation of microglial in the hippocampus of the mice. Apamin inhibited M1-type polarization but promoted M2-type polarization of microglia after neonatal sevoflurane exposures in the hippocampus. In conclusion, Apamin attenuates neonatal sevoflurane exposures that cause cognitive deficits in mice through regulating hippocampal neuroinflammation.


Assuntos
Disfunção Cognitiva , Doenças Neuroinflamatórias , Animais , Camundongos , Camundongos Endogâmicos C57BL , Apamina , Sevoflurano , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Cognição , Hipocampo
6.
Cell Res ; 31(12): 1291-1307, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34518654

RESUMO

Intestinal stem cell (ISC) differentiation is regulated precisely by a niche in the crypt, where lymphocytes may interact with stem and transient amplifying (TA) cells. However, whether and how lymphocyte-stem/TA cell contact affects ISC differentiation is largely unknown. Here, we uncover a novel role of T cell-stem/TA cell contact in ISC fate decisions. We show that intestinal lymphocyte depletion results in skewed ISC differentiation in mice, which can be rescued by T cell transfer. Mechanistically, integrin αEß7 expressed on T cells binds to E-cadherin on ISCs and TA cells, triggering E-cadherin endocytosis and the consequent Wnt and Notch signaling alterations. Blocking αEß7-E-cadherin adhesion suppresses Wnt signaling and promotes Notch signaling in ISCs and TA cells, leading to defective ISC differentiation. Thus, αEß7+ T cells regulate ISC differentiation at single-cell level through cell-cell contact-mediated αEß7-E-cadherin adhesion signaling, highlighting a critical role of the T cell-stem/TA cell contact in maintaining intestinal homeostasis.


Assuntos
Células-Tronco , Linfócitos T , Animais , Adesão Celular , Diferenciação Celular , Linhagem da Célula , Integrinas , Mucosa Intestinal , Camundongos , Células-Tronco/citologia , Linfócitos T/citologia , Via de Sinalização Wnt
7.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048708

RESUMO

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/genética , Linhagem Celular , Citocinas , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/química , Proteínas de Membrana/química , Modelos Moleculares , Proteínas de Neoplasias/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
8.
aBIOTECH ; 2(4): 357-364, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36311809

RESUMO

A chromosome-level genome assembly of the bread wheat variety Chinese Spring (CS) has recently been published. Genome-wide identification of regulatory elements (REs) responsible for regulating gene activity is key to further mechanistic studies. Because epigenetic activity can reflect RE activity, defining chromatin states based on epigenomic features is an effective way to detect REs. Here, we present the web-based platform Chinese Spring chromatin state (CSCS), which provides CS chromatin signature information. CSCS includes 15 recently published epigenomic data sets including open chromatin and major chromatin marks, which are further partitioned into 15 distinct chromatin states. CSCS curates detailed information about these chromatin states, with trained self-organization mapping (SOM) for segments in all chromatin states and JBrowse visualization for genomic regions or genes. Motif analysis for genomic regions or genes, GO analysis for genes and SOM analysis for new epigenomic data sets are also integrated into CSCS. In summary, the CSCS database contains the combinatorial patterns of chromatin signatures in wheat and facilitates the detection of functional elements and further clarification of regulatory activities. We illustrate how CSCS enables biological insights using one example, demonstrating that CSCS is a highly useful resource for intensive data mining. CSCS is available at http://bioinfo.cemps.ac.cn/CSCS/. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00048-z.

9.
Plant J ; 101(1): 237-248, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494994

RESUMO

High-throughput technology has become a powerful approach for routine plant research. Interpreting the biological significance of high-throughput data has largely focused on the functional characterization of a large gene list or genomic loci that involves the following two aspects: the functions of the genes or loci and how they are regulated as a whole, i.e. searching for the upstream regulators. Traditional platforms for functional annotation largely help resolving the first issue. Addressing the second issue is essential for a global understanding of the regulatory mechanism, but is more challenging, and requires additional high-throughput experimental evidence and a unified statistical framework for data-mining. The rapid accumulation of 'omics data provides a large amount of experimental data. We here present Plant Regulomics, an interface that integrates 19 925 transcriptomic and epigenomic data sets and diverse sources of functional evidence (58 112 terms and 695 414 protein-protein interactions) from six plant species along with the orthologous genes from 56 whole-genome sequenced plant species. All pair-wise transcriptomic comparisons with biological significance within the same study were performed, and all epigenomic data were processed to genomic loci targeted by various factors. These data were well organized to gene modules and loci lists, which were further implemented into the same statistical framework. For any input gene list or genomic loci, Plant Regulomics retrieves the upstream factors, treatments, and experimental/environmental conditions regulating the input from the integrated 'omics data. Additionally, multiple tools and an interactive visualization are available through a user-friendly web interface. Plant Regulomics is available at http://bioinfo.sibs.ac.cn/plant-regulomics.


Assuntos
Bases de Dados Genéticas , Genoma de Planta/genética , Plantas/genética , Plantas/metabolismo , Genômica , Software , Transcriptoma/genética
10.
Genome Biol ; 20(1): 139, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307500

RESUMO

BACKGROUND: Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies. RESULTS: In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons. Thousands of new genic regions and cis-regulatory elements are identified based on the combinatorial pattern of chromatin features. Roughly 1.5% of the genome encodes a subset of active regulatory elements, including promoters and enhancer-like elements, which are characterized by a high degree of chromatin openness and histone acetylation, an abundance of CpG islands, and low DNA methylation levels. A comparison across sub-genomes reveals that evolutionary selection on gene regulation is targeted at the sequence and chromatin feature levels. The divergent enrichment of cis-elements between enhancer-like sequences and promoters implies these functional elements are targeted by different transcription factors. CONCLUSIONS: We herein present a systematic epigenomic map for the annotation of cis-regulatory elements in the bread wheat genome, which provides new insights into the connections between chromatin modifications and cis-regulatory activities in allohexaploid wheat.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Código das Histonas , Elementos Reguladores de Transcrição , Triticum/genética , Evolução Biológica , Epigenômica , Genoma de Planta , Plântula/metabolismo , Triticum/metabolismo
11.
Front Plant Sci ; 9: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416546

RESUMO

Phytohormones regulate diverse aspects of plant growth and environmental responses. Recent high-throughput technologies have promoted a more comprehensive profiling of genes regulated by different hormones. However, these omics data generally result in large gene lists that make it challenging to interpret the data and extract insights into biological significance. With the rapid accumulation of theses large-scale experiments, especially the transcriptomic data available in public databases, a means of using this information to explore the transcriptional networks is needed. Different platforms have different architectures and designs, and even similar studies using the same platform may obtain data with large variances because of the highly dynamic and flexible effects of plant hormones; this makes it difficult to make comparisons across different studies and platforms. Here, we present a web server providing gene set-level analyses of Arabidopsis thaliana hormone responses. GSHR collected 333 RNA-seq and 1,205 microarray datasets from the Gene Expression Omnibus, characterizing transcriptomic changes in Arabidopsis in response to phytohormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonic acid, salicylic acid, and strigolactones. These data were further processed and organized into 1,368 gene sets regulated by different hormones or hormone-related factors. By comparing input gene lists to these gene sets, GSHR helped to identify gene sets from the input gene list regulated by different phytohormones or related factors. Together, GSHR links prior information regarding transcriptomic changes induced by hormones and related factors to newly generated data and facilities cross-study and cross-platform comparisons; this helps facilitate the mining of biologically significant information from large-scale datasets. The GSHR is freely available at http://bioinfo.sibs.ac.cn/GSHR/.

12.
Plant Biotechnol J ; 14(9): 1838-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26970512

RESUMO

In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot-specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3, an OsCYP714D1/Eui homologue from Populus trichocarpa. PtCYP714A3 was ubiquitously expressed with the highest transcript level in cambium-phloem tissues, and was greatly induced by salt and osmotic stress in poplar. Subcellular localization analyses indicated that PtCYP714A3-YFP fusion protein was targeted to endoplasmic reticulum (ER). Expression of PtCYP714A3 in the rice eui mutant could rescue its excessive-shoot-growth phenotype. Ectopic expression of PtCYP714A3 in rice led to semi-dwarfed phenotype with promoted tillering and reduced seed size. Transgenic lines which showed significant expression of PtCYP714A3 also accumulated lower GA level than did the wild-type (WT) plants. The expression of some GA biosynthesis genes was significantly suppressed in these transgenic plants. Furthermore, transgenic rice plants exhibited enhanced tolerance to salt and maintained more Na(+) in both shoot and root tissues under salinity stress. All these results not only suggest a crucial role of PtCYP714A3 in shoot responses to salt toxicity in rice, but also provide a molecular basis for genetic engineering of salt-tolerant crops.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Populus/enzimologia , Tolerância ao Sal/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Oryza/efeitos dos fármacos , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...